An orphan gene is necessary for preaxial digit formation during salamander limb development
نویسندگان
چکیده
Limb development in salamanders differs from other tetrapods in that the first digits to form are the two most anterior (preaxial dominance). This has been proposed as a salamander novelty and its mechanistic basis is unknown. Salamanders are the only adult tetrapods able to regenerate the limb, and the contribution of preaxial dominance to limb regeneration is unclear. Here we show that during early outgrowth of the limb bud, a small cohort of cells express the orphan gene Prod1 together with Bmp2, a critical player in digit condensation in amniotes. Disruption of Prod1 with a gene-editing nuclease abrogates these cells, and blocks formation of the radius and ulna, and outgrowth of the anterior digits. Preaxial dominance is a notable feature of limb regeneration in the larval newt, but this changes abruptly after metamorphosis so that the formation of anterior and posterior digits occurs together within the autopodium resembling an amniote-like pattern.
منابع مشابه
Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.
The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the...
متن کاملPolydactylous limbs in Strong's Luxoid mice result from ectopic polarizing activity.
Strong's Luxoid (1stD) is a semidominant mouse mutation in which heterozygotes show preaxial hindlimb polydactyly, and homozygotes show fore- and hindlimb polydactyly. The digit patterns of these polydactylous limbs resemble those caused by polarizing grafts, since additional digits with posterior character are present at the anterior side of the limb. Such observations suggest that 1stD limb b...
متن کاملGata6-Dependent GLI3 Repressor Function is Essential in Anterior Limb Progenitor Cells for Proper Limb Development
Gli3 is a major regulator of Hedgehog signaling during limb development. In the anterior mesenchyme, GLI3 is proteolytically processed into GLI3R, a truncated repressor form that inhibits Hedgehog signaling. Although numerous studies have identified mechanisms that regulate Gli3 function in vitro, it is not completely understood how Gli3 function is regulated in vivo. In this study, we show a n...
متن کاملLimb chondrogenesis of the seepage salamander, Desmognathus aeneus (amphibia: plethodontidae).
Salamanders are infrequently mentioned in analyses of tetrapod limb formation, as their development varies considerably from that of amniotes. However, urodeles provide an opportunity to study how limb ontogeny varies with major differences in life history. Here we assess limb development in Desmognathus aeneus, a direct-developing salamander, and compare it to patterns seen in salamanders with...
متن کاملHoxd-12 differentially affects preaxial and postaxial chondrogenic branches in the limb and regulates Sonic hedgehog in a positive feedback loop.
Several 5' members of the Hoxd cluster are expressed in nested posterior-distal domains of the limb bud suggesting a role in regulating anteroposterior pattern of skeletal elements. While loss-of-function mutants have demonstrated a regulatory role for these genes in the developing limb, extensive functional overlaps between various different Hox genes has hampered elucidation of the roles play...
متن کامل